An upper bound for the nilpotency class of Leibniz algebras
author
Abstract:
This article doesn't have abstract
similar resources
A Bound for the Nilpotency Class of a Lie Algebra
In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.
full textAn upper bound to the second Hankel functional for the class of gamma-starlike functions
The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$ for the function $f$, belonging to the class of Gamma-starlike functions, using Toeplitz determinants. The result presented here include two known results as their special cases.
full textan upper bound to the second hankel functional for the class of gamma-starlike functions
the objective of this paper is to obtain an upper bound to the second hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$ for the function $f$, belonging to the class of gamma-starlike functions, using toeplitz determinants. the result presented here include two known results as their special cases.
full textAn upper bound for the regularity of powers of edge ideals
A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$, denoted by match$(G)$. In this paper, we provide a generalization of this result for powers of edge ideals. More precisely, we show that for every graph $G$ and every $sgeq 1$, $${rm reg}( R/ I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...
full textLeibniz Algebras and Lie Algebras
This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
full textAn Upper Bound on the First Zagreb Index in Trees
In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.
full textMy Resources
Journal title
volume 8 issue 3
pages 144- 152
publication date 2022-11
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023