An upper bound for the nilpotency class of Leibniz algebras

author

Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

full text

An upper bound to the second Hankel functional for the class of gamma-starlike functions

‎The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of Gamma-starlike functions‎, ‎using Toeplitz determinants‎. ‎The result presented here include‎ ‎two known results as their special cases‎.  

full text

an upper bound to the second hankel functional for the class of gamma-starlike functions

‎the objective of this paper is to obtain an upper bound to the second hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of gamma-starlike functions‎, ‎using toeplitz determinants‎. ‎the result presented here include‎ ‎two known results as their special cases‎.

full text

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

full text

Leibniz Algebras and Lie Algebras

This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.

full text

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  144- 152

publication date 2022-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023